Expert Monograph: Synergistic Neuromodulation in ADHD: The Role of Preventive Wellness Lifestyle and Low Sound Frequency Vibroacoustic Therapy

I. Understanding Attention-Deficit/Hyperactivity Disorder (ADHD) as a Systemic Neurobiological Dysregulation

Attention-Deficit/Hyperactivity Disorder (ADHD) is a lifelong, highly heterogeneous neurodevelopmental condition characterized by impairments in attention, motor hyperactivity, and impulsivity that persist into adulthood for many individuals. While traditionally managed through pharmacological and behavioral interventions, recent research emphasizes that ADHD profoundly affects the "whole person"—encompassing mental, emotional, physical, spiritual, and social well-being—and leads to significant comorbidities, including chronic stress, anxiety, sleep issues, and physical health risks.

A. Current Etiological Models and Neurotransmitter Pathways

The understanding of ADHD pathogenesis is complex, relying on a synergistic combination of genetic and environmental factors. Genetic factors contribute significantly, with heritability estimated between 60% and 90%. Candidate gene studies implicate loci coding for neurotransmitter regulation, such as , , and . 5

The leading neurobiological framework remains the monoamine or dopamine hypothesis, which posits that the core symptoms arise from deficiency or impaired signaling of dopamine

(DA) and/or norepinephrine (NE).⁶ Stimulant medications, the primary pharmacological treatment, are hypothesized to exert their therapeutic effects by optimizing DA and NE modulated task-related brain networks, thereby increasing perceived saliency and reducing interference from the default mode network.⁷ It is recognized, however, that the mechanisms of action for stimulants involve multiple transmitter systems beyond DA and NE.⁶ Given that ADHD is fundamentally conceptualized as a disorder of the prefrontal cortex (PFC) and its connectivity ², effective interventions must either address the neurotransmitter hypoactive state or bolster the regulatory functions controlled by these circuits.

B. The Nexus of ADHD, Stress, and Sensory Processing

ADHD is more accurately viewed as a deficit in executive function and self-regulation.³ This regulatory impairment undermines the patient's ability to initiate and maintain healthy habits, leading to chronic stress, anxiety, and poor organizational skills.³ Chronic stress and anxiety, in turn, can significantly exacerbate ADHD symptoms.³

Furthermore, there is a strong association between ADHD and symptoms of Sensory Processing Disorder (SPD). Children and adults with ADHD frequently exhibit both hypo- and hyper-responsivity across various sensory domains (auditory, visual, tactile) compared to neurotypical controls. This comorbidity suggests a neurobiological overlap where dysregulated sensory input contributes directly to hyperarousal and difficulty maintaining focused attention. For this reason, treatments must extend beyond purely cognitive or pharmacological approaches to include methods that address systemic self-regulation and sensory modulation. Non-pharmacological treatments, including behavioral, physical activity, and complementary methods, account for approximately 80% of all clinical trials investigated for ADHD in recent years, highlighting a growing consensus that multi-modal strategies are essential for holistic management.

II. Pillar I: The Evidence Base for Preventive Wellness Lifestyle (PWS) Components

A Preventive Wellness Lifestyle (PWS) targets structural, routine-based behaviors that support neuroplasticity and improve cognitive, emotional, and physical health over time.¹² These interventions are critical because they directly counteract the organizational and motivational deficits inherent to ADHD, aiming to establish enduring, positive modifications in

A. Aerobic Exercise and Executive Function Enhancement

Aerobic exercise stands out as a foundational component of PWS with robust evidence supporting its impact on ADHD symptoms.¹³ Chronic aerobic exercise significantly improves executive functions in children and adolescents with ADHD.¹³

Systematic reviews indicate that sustained physical activity generates improvements across several key domains critical to ADHD impairment, including inhibitory control, neurocognitive functions, working memory, and attention. The suggested optimal protocol for achieving the best intervention effects involves chronic engagement, lasting no less than 12 weeks, scheduled three to five times per week, with sessions of 60 minutes or more at moderate or moderate-to-vigorous intensity. Mechanistically, acute exercise is proposed to increase arousal and elevate catecholamine levels to, creating a temporary neurophysiological state favorable to cognitive performance, analogous to the effects of stimulant medication. Furthermore, exercise is documented as a strategy to increase vagal tone, supporting improved systemic self-regulation. The necessity for chronic intervention underscores the difficulty of adherence for ADHD individuals, suggesting that effective adjunctive therapies should focus on facilitating sustained engagement.

B. Sleep Hygiene and Chronobiological Regulation

Sleep disorders are highly prevalent in ADHD populations and share a critical bidirectional relationship with symptom severity. Higher ADHD traits correlate significantly with higher insomnia severity, reduced subjective sleep quality, and a later chronotype. This pattern persists into adulthood; individuals with persistent ADHD symptoms report poorer sleep quality compared to those whose ADHD has remitted. The presence of poor sleep exacerbates executive dysfunction during the day, creating a negative feedback loop. Behavioral sleep interventions designed to improve sleep can thus reduce the severity of inattention and hyperactivity/impulsivity. The utility of melatonin to address delayed sleep onset, a common issue in ADHD due to inhibited release, further emphasizes the strong chronobiological component of the disorder.

C. Mindfulness and Cognitive Control

Mindfulness-based interventions (MBIs), including various forms of meditation and yoga, are increasingly integrated into ADHD treatment.²² MBIs enhance focus and sustained attention.²³ Meta-analyses have shown that meditation-based therapies result in a moderate effect size in improving childhood ADHD symptoms, with particular benefits observed in the domain of **inattention** compared to hyperactive-impulsive symptoms.²³ For adults, mindfulness has demonstrated significant improvements in attention, working memory, and inhibition.²³ This demonstrates that while PWS involves lifestyle changes, it also includes specific cognitive training designed to improve the neural mechanisms of self-control.

D. Nutritional and Micronutrient Support

Integrative medicine emphasizes nutritional support to promote general health and optimize the neurobiological environment.³ Specific micronutrient supplementation has been investigated in controlled trials. Randomized controlled trials (RCTs) of comprehensive micronutrient formulas, containing all essential vitamins and minerals, have demonstrated mixed, yet promising, clinical outcomes. One trial found that micronutrients provided a global benefit over placebo based on blinded clinician rating, though this effect was not replicated consistently in parent-reported outcome measures.²⁵ Specific nutrient assays confirmed significant increases in markers such as Vitamin D, , and folate levels in the intervention group.²⁶ Beyond multivitamin complexes, single nutrients like Omega-3 fatty acids, Zinc, and Iron are often recommended based on their role in regulating dopamine, brain health, and managing potential deficiencies commonly observed in ADHD populations.³

The efficacy data for PWS components highlights that sustained, active engagement is required for long-term therapeutic remodeling. Table 1 summarizes the evidence base for these foundational PWS components.

Table 1: Summary of Evidence for Key Preventive Wellness Lifestyle (PWS) Components in ADHD

PWS Component	Primary Mechanism of Action	Observed Benefit in ADHD (Symptom	Optimal Protocol/Evid ence Quality	Source IDs
------------------	-----------------------------------	--	--	------------

		Domain)		
Aerobic Exercise (Chronic)	Increase Catecholamine s (DA/NE), Neural Growth, Vagal Toning	Executive Function (Inhibitory Control, Working Memory, Attention)	Chronic (≥12 weeks, 3-5x/wk, ≥60 min); Medium Effect Sizes	13
Mindfulness/M editation	Enhanced Focus, Reduced Cognitive Arousal, Vagal Toning	Inattention, Emotional Regulation	Moderate Effect Size (Higher for adults); Requires sustained attention ²³	22
Sleep Hygiene Improvement	Restored Neurocognitive Processing, Reduced Stress	Reduced Symptom Severity (Hyperactivity/I mpulsivity), Improved Quality of Life	Strong correlational and clinical significance; Behavioral interventions effective	18
Micronutrient Supplementati on	Optimized Neurotransmitt er Synthesis/Func tion (e.g., DA/NE production)	Global Functioning, Irritability (Mixed evidence by rater)	RCTs show safety and some efficacy; adherence challenges (pill burden)	25

III. Pillar II: Mechanisms and Clinical Data of Low-Frequency Vibroacoustic Therapy (VAT)

Low sound frequency Vibroacoustic Therapy (VAT) is a non-invasive, complementary modality that utilizes sine wave vibrations to influence the physical and emotional state of the body, offering a passive means of neuromodulation.

A. VAT Technology and Frequency Specificity

VAT, also known as Vibroacoustic Sound Massage (VSM) or physioacoustic therapy, delivers low-frequency sound waves through specialized devices, such as beds or chairs equipped with embedded speakers or transducers, allowing the vibration to penetrate deep into body tissues.²⁹

The therapeutic range typically employed in VAT is between **30 and 120 Hz**. ²⁹ These low frequencies are selected because they are detectable by human mechanoreceptors (such as Pacinian corpuscles) and are generally associated with producing calming and relaxing effects. ²⁹ The frequency of **40 Hz**, specifically, has been the subject of dedicated study for its potential to promote relaxation and improve focus. ²⁹ Research in related fields, such as neurodegenerative disease models, is actively exploring how 40 Hz rhythmic sensory stimulation (light and sound) can influence brain activity, particularly gamma oscillations (30–50 Hz), which are crucial for information processing and memory. ³² This suggests VAT may offer a form of targeted sensory input capable of influencing neural oscillatory coherence. ³⁴

B. Direct Physiological and Cognitive Modulation

VAT's most significant demonstrated effect is its direct influence on the Autonomic Nervous System (ANS), making it a valuable tool for stress management—a key co-occurring issue in ADHD.³⁵

1. **ANS and Vagal Tone Modulation:** Studies using Electrocardiogram (ECG) to analyze Heart Rate Variability (HRV) demonstrate that VSM significantly increases **parasympathetic activity.** Specifically, VSM increases the high-frequency power (HF) and the root mean square of successive differences (RMSSD), while often reducing sympathetic activity markers (SDNN and LF) and heart rate BPM. This physiological shift confirms VAT's role in promoting relaxation and reducing the body's sympathetic stress response. Importantly, this benefit appears to be state-dependent: individuals who report higher levels of psychological stress before the session may experience the

- greatest positive influence on well-being.35
- 2. **EEG and Concentration:** Analysis of Electroencephalography (EEG) data further links VAT to cognitive changes relevant to ADHD. Following VSM exposure, EEG results indicate increased concentration and reduced cognitive arousal.³⁵ Concentration is often quantified using the Theta/Beta Ratio (TBR), a metric relevant to ADHD diagnosis and used to measure mind-wandering.³⁶ The data suggests that VAT modulates brainwave activity in a way that aligns with improved attentional state.

C. Evidence in Neurodevelopmental Populations

While the majority of high-quality VAT research has focused on stress reduction, chronic pain, and other neurological disorders ³³, initial explorations in neurodevelopmental populations suggest promising applications for ADHD:

- Cognitive Improvement: A study involving Whole Body Vibration (WBV), a related form of sensory stimulation, applied over 10 days to an adult with ADHD, demonstrated improved performance on neuropsychological tests at follow-up.³⁷ This outcome suggests that vibroacoustic inputs can influence underlying cognitive functioning, such as executive control.
- **Behavioral Outcomes:** A pilot study involving sixty children with ADHD who participated in a multi-modal therapy (including potentially sensory stimulation) reported significant improvement in behavioral problems, anxiety, hyperactivity, and impulsivity.³⁸ This finding supports the utility of incorporating targeted physical and sensory therapies alongside behavioral management.

Table 2 details the physiological targets of VAT that are critical for understanding its role in ADHD management.

Table 2: Physiological Targets of Low-Frequency Vibroacoustic Therapy (VAT) Relevant to ADHD

Physiological/ Cognitive Marker	Measurement Tool	Observed Effect of VSM/VAT	Relevance to ADHD and Synergy	Source IDs
Parasympathet ic Activity/Vagal	ECG (HRV metrics: RMSSD, HF)	Increased parasympathet ic activity;	Buffers chronic stress; improves	35

Tone		Reduced sympathetic tone	systemic self-regulation (shared PWS goal)	
Concentration/ Attention	EEG (Theta/Beta Ratio, TBR)	Increased concentration; Reduced arousal	Directly addresses core symptom of inattention and mind-wanderin g 36	35
Psychological Stress	PSS-10/Self-R eport	Reduced perceived psychological stress; Homogenized well-being	Mitigates common comorbid anxiety/mood symptoms in ADHD ³	35
Neurocognitio n	Neuropsycholo gical Assessments (e.g., EF tasks)	Improved test performance (in WBV/VAT related studies)	Provides a bridge to sustained PWS compliance and academic/occu pational function	37
Neural Oscillation/Syn chrony	EEG (Gamma Band 30-50 Hz)	Targeted stimulation (e.g., 40 Hz) used in neurodevelop mental research	Plausible mechanism for improving cognitive processing and neural timing ²⁹	

IV. The Synergy Model: Integrating PWS and VAT via

the Autonomic Nervous System

The integration of PWS components with VAT offers a potent, synergistic approach that addresses the core neurobiological barrier in ADHD: the inability to achieve and maintain a regulated, flexible nervous system state.

A. Autonomic Dysfunction: The Low Vagal Tone Baseline

A crucial element linking ADHD to poor emotional regulation and chronic stress is autonomic dysregulation. Individuals with ADHD often exhibit **lower vagal tone** compared to neurotypical peers. ¹⁷ Vagal tone, a measure of parasympathetic activity, reflects the nervous system's capacity to adapt, recover from challenges, and manage stress. ¹⁷ A low, rigid vagal tone baseline makes individuals with ADHD more susceptible to being overwhelmed by sensory input or environmental demands, which fundamentally exacerbates symptoms of hyperactivity, impulsivity, and inattention. ¹⁰

B. The Passive-Active Feedback Loop for Regulation

The combined strategy leverages the strengths of both modalities—the chronic, active conditioning of PWS and the acute, passive modulation of VAT—to establish a mechanism of self-regulation that supports treatment adherence.

PWS interventions, such as aerobic exercise and mindfulness training, require sustained effort and organizational skills—areas traditionally undermined by ADHD.⁸ They function as **active conditioning** methods that chronically strengthen the vagal brake over weeks or months.¹⁷ Conversely, VAT provides a method of **passive neuromodulation**.³⁰ Its demonstrated ability to acutely increase parasympathetic activity and reduce cognitive arousal provides a reliable, non-effortful means to shift the nervous system state rapidly.³⁵

The synergy lies in using VAT as a "primer." By utilizing VAT sessions (e.g., 40 minutes of low-frequency stimulation ³⁹) immediately prior to effortful PWS activities, the patient is shifted from a state of low vagal tone/high arousal to a state characterized by increased concentration and lowered stress (reduced TBR).³⁵ This creates an optimal neurophysiological window, making it easier for the individual to successfully engage in the cognitively

demanding tasks of PWS, such as organizational skills training, focused academic work, or practicing sustained attention through meditation.²⁴ The increased success in these active PWS tasks then reinforces the underlying neural pathways, leading to chronic improvements in vagal tone and self-regulation over time, thereby reducing the dependency on acute VAT intervention. This dual approach overcomes the adherence barrier imposed by the disorder itself.

C. Sensory Modulation and Neurotransmitter Alignment

The co-occurrence of Sensory Processing Deficits (SPD) in ADHD 9 is directly addressed by the integration of VAT. VAT provides structured, precise vibrotactile input (30–120 Hz) that can aid in modulating an overly reactive or under-responsive nervous system. 29 Furthermore, the mechanistic overlap between Vagus Nerve Stimulation (VNS)—which activates the locus coeruleus-norepinephrine (NE) pathway, crucial in ADHD pathogenesis—and VAT's influence on general vagal tone suggests that the combined therapy may indirectly contribute to optimizing neurotransmitter signaling relevant to attention and arousal. 2

Table 3 illustrates this integrated model, detailing the function of the passive-active feedback loop.

Table 3: Mechanistic Synergy: The Passive-Active Feedback Loop

Intervention Modality	Primary Effect	ADHD Target Mechanism	Mode of Action (VAT/PWS Synergy)
Vibroacoustic Therapy (VAT)	Acute Vagal Toning, Reduced Arousal	Autonomic Dysregulation, Hyperarousal	Passive Neuromodulation: Creates an optimal, calm state (low-stress baseline)
Preventive Wellness Lifestyle (PWS)	Chronic Catecholamine/Neu ral Growth	Executive Function, Self-Regulation Deficits	Active Neuroplasticity: Requires effort; trains the brain in the modulated

			state
Combined VAT + PWS	Sustained Vagal Conditioning, Enhanced EF	Adherence, Symptom Persistence	Feedback Loop: VAT enables easier PWS adherence, PWS reinforces the improved vagal state long-term

V. Clinical Implementation and Evidence Gaps

The adoption of VAT and PWS must be conducted within an integrative medicine framework, which considers the whole person and leverages conventional, complementary, and holistic options.³

A. Assessing Evidence Quality and Methodological Limitations

While the mechanistic arguments for combining VAT and PWS are strong, the evidence quality for sensory therapies in neurodevelopmental disorders remains limited. Systematic reviews frequently note that confidence in the evidence for many complementary and alternative medicine (CAM) treatments for ADHD is "very low" or "low," often compromised by a high risk of bias in the included trials.¹

A key limitation across sensory integration research, including modalities related to VAT, is the prevalence of unsystematic protocols.³⁹ This lack of standardization regarding frequency selection, intensity, duration, and control conditions inhibits rigorous meta-analysis and the generation of clear, clinically transferable guidelines.³⁴ Furthermore, researchers sometimes conflate general Whole-Body Vibration (WBV) or generalized music therapy with specific low-frequency Vibroacoustic Therapy (VAT), which uses targeted sinusoidal waves and potentially different physiological mechanisms.³⁰ Researchers must prioritize clarity regarding the exact sensory input delivered to ensure replicability.

B. Recommendations for Clinical Protocols and Monitoring

When integrating VAT into an ADHD care plan, it should be viewed as a complementary tool designed to support general health, stress management, and, critically, adherence to behavioral therapies, rather than a standalone replacement for established treatments like stimulant medication or Cognitive Behavioral Therapy (CBT).³

Based on the available mechanistic data, clinical protocols should incorporate VAT as a preparatory intervention:

- 1. **Timing and Priming:** VAT sessions should be strategically scheduled as a "pre-treatment priming ritual." Administering 30- to 40-minute VAT sessions immediately before highly demanding PWS activities—such as organization skills training, complex homework tasks, or intense mindfulness practice—is hypothesized to maximize efficacy by leveraging the period of increased concentration and reduced arousal induced by the VAT.³⁵
- 2. **Frequency and Duration:** Based on related sensory intervention studies, individual treatment for sessions lasting approximately 40 minutes has shown effectiveness in children with neurodevelopmental disorders.³⁹ Chronic application is necessary to facilitate sustained neural and behavioral change.
- 3. **Objective Monitoring:** Given the limitations in subjective symptom reports, efficacy monitoring should utilize objective physiological biomarkers. Changes in baseline vagal tone (HRV/ECG data) and reductions in the Theta/Beta Ratio (TBR/EEG) should be tracked to confirm successful parasympathetic engagement and cognitive modulation.³⁵ These physiological markers serve as quantifiable evidence that the intervention is successfully creating the regulated state necessary for PWS assimilation.

C. Future Research Directions

To move this combined therapeutic approach toward evidence-based practice, future research must shift away from small-scale feasibility studies and employ gold-standard, parallel-group Randomized Controlled Trials (RCTs). ⁴³ Priority research should compare three intervention arms against a placebo control group: PWS alone, VAT alone, and the combined VAT + PWS sequence. Primary outcomes must include both objective, sustained neurological changes (e.g., long-term vagal tone metrics and baseline TBR) and functional behavioral improvements (e.g., academic performance, organizational skills, and reduced ADHD symptom severity). Furthermore, research must establish standardized VAT protocols (specific frequencies, intensity, and duration) tailored to the unique sensory and autonomic needs of the ADHD population.

VI. Conclusion and Expert Recommendations

The management of Attention-Deficit/Hyperactivity Disorder increasingly requires a multi-modal strategy that addresses not only core attentional and hyperactivity symptoms but also the pervasive systemic dysregulation, particularly chronic stress and autonomic inflexibility, that compromises quality of life and undermines adherence to treatment.

Preventive Wellness Lifestyle components—primarily chronic aerobic exercise and mindfulness—represent powerful, evidence-based tools for improving executive function and promoting long-term neuroplasticity. However, the requirement for sustained effort often presents a significant barrier for individuals coping with the motivational and organizational deficits of ADHD.

Low sound frequency Vibroacoustic Therapy (VAT) provides a crucial solution to this adherence challenge. Mechanistically validated studies demonstrate that VAT acutely and reliably increases parasympathetic activity (vagal tone) and lowers cognitive arousal (TBR).³⁵ This capacity for immediate, passive neuromodulation allows VAT to function as an optimal **neurophysiological primer**. By using VAT to temporarily reset the nervous system to a state of calm and focus, the individual with ADHD is enabled to engage more successfully in the effortful, active conditioning required by the Preventive Wellness Lifestyle. Over time, this passive-active feedback loop promotes sustained vagal conditioning and enhanced self-regulation, representing a sophisticated, complementary pathway to managing ADHD.

While the strong mechanistic rationale supports immediate clinical integration within an integrative treatment plan, the field requires rigorous, large-scale RCTs using objective neurophysiological markers (HRV, EEG) to definitively confirm the sustained clinical efficacy of this combined modality in both adult and pediatric ADHD populations.

Works cited

- Short-term and long-term effect of non-pharmacotherapy for adults with ADHD: a systematic review and network meta-analysis - Frontiers, accessed October 8, 2025,
 - https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2025.151687 8/full
- 2. Transcutaneous auricular vagus nerve stimulation as a potential therapy for attention deficit hyperactivity disorder: modulation of the noradrenergic pathway in the prefrontal lobe PMC PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11652481/
- 3. Integrative Medicine for ADHD: Holistic Health and Wellness Guide, accessed

- October 8, 2025,
- https://www.additudemag.com/integrative-medicine-adhd-holistic-health-wellness-quide/
- 4. The impacts associated with having ADHD: an umbrella review PMC, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11151783/
- 5. The neurobiological basis of ADHD PMC PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3016271/
- 6. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining, accessed October 8, 2025, https://www.researchgate.net/publication/23453946 The dopaminergic hypothe sis of attention-deficithyperactivity disorder needs re-examining
- 7. The dopamine hypothesis for ADHD: An evaluation of evidence accumulated from human studies and animal models PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11604610/
- 8. Adult ADHD: Treatment and Management AAFP, accessed October 8, 2025, https://www.aafp.org/family-physician/patient-care/prevention-wellness/emotion-al-wellbeing/adhd-toolkit/treatment-and-management.html
- 9. Sensory Modulation Disorder and its Neural Circuitry in Adults with ADHD: A Pilot Study, accessed October 8, 2025, https://pubmed.ncbi.nlm.nih.gov/32770315/
- Sensory modulation disorder and its neural circuitry in adults with ADHD: A pilot study, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10655817/
- 11. Treatment of ADHD: Drugs, psychological therapies, devices, complementary and alternative methods as well as the trends in clinical trials Frontiers, accessed October 8, 2025, https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.10 66988/full
- 12. Preventive Interventions for ADHD: A Neurodevelopmental Perspective PMC, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC3441940/
- 13. Effects of aerobic exercise on executive function in children and adolescents with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized controlled trials PubMed, accessed October 8, 2025, https://pubmed.ncbi.nlm.nih.gov/40885970/
- 14. Effects of Physical Activity, Exercise and Sport on Executive Function in Young People with Attention Deficit Hyperactivity Disorder: A Systematic Review MDPI, accessed October 8, 2025, https://www.mdpi.com/2254-9625/12/1/6
- 15. Effect of aerobic exercise on the improvement of executive function in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis Frontiers, accessed October 8, 2025, https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.13763 54/full
- 16. Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients With ADHD PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC6443849/
- 17. How to Improve Vagal Tone | Why It Matters for Mental Health Neurodivergent

- Insights, accessed October 8, 2025, https://neurodivergentinsights.com/how-to-improve-vagal-tone/
- Relationship between sleep disorders and attention-deficit-hyperactivity disorder in children, accessed October 8, 2025, https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2022.919572/f
- 19. Associations of ADHD traits, sleep/circadian factors, depression and quality of life, accessed October 8, 2025, https://mentalhealth.bmj.com/content/28/1/e301625
- 20. Associations between ADHD and sleep quality: Longitudinal analyses from a nationally-representative cohort of twins PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC5484392/
- 21. The Association Between Insomnia and Sleep Duration in Adults With Attention-Deficit Hyperactivity Disorder: Results From a General Population Study, accessed October 8, 2025, https://jcsm.aasm.org/doi/10.5664/jcsm.6976
- Effects of Mindfulness-Based Interventions in Children and Adolescents with ADHD: A Systematic Review and Meta-Analysis of Randomized Controlled Trials, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9690476/
- 23. Non-pharmacologic management of attention-deficit/hyperactivity disorder in children and adolescents: a review Translational Pediatrics, accessed October 8, 2025, https://tp.amegroups.org/article/view/32479/html
- 24. Non-pharmacologic management of attention-deficit/hyperactivity disorder in children and adolescents: a review PMC, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7082245/
- 25. Micronutrients for Attention-Deficit/Hyperactivity Disorder in Youth: A Placebo-Controlled Randomized Clinical Trial PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC8782920/
- 26. Vitamin-mineral treatment of attention-deficit hyperactivitydisorder in adults: double-blind randomised placebo-controlledtrial | The British Journal of Psychiatry - Cambridge University Press, accessed October 8, 2025, https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/vitaminmineral-treatment-of-attentiondeficit-hyperactivity-disorder-in-adults-doubleblind-randomised-placebocontrolled-trial/6DECDD36BD673FB31C92C64BAA9BBA14
- 27. Effects of Acute and Chronic Exercises on Executive Function in Children and Adolescents: A Systemic Review and Meta-Analysis Frontiers, accessed October 8, 2025, https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2020.5549 15/full
- 28. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: a narrative review PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10985214/
- 29. Vibroacoustic therapy Wikipedia, accessed October 8, 2025, https://en.wikipedia.org/wiki/Vibroacoustic therapy
- 30. How does Vibroacoustic Therapy Work? Conscious Health, accessed October 8,

- 2025, https://conscioushealthcenter.com/how-does-vibroacoustic-therapy-work/
- 31. Exploring Vibroacoustic Therapy: Sound Waves for Healing Mederi Center, accessed October 8, 2025, https://medericenter.org/resources/dr-michael-hummel-blog/exploring-vibroacou
- 32. Study Details | NCT05196984 | Gamma Frequency Stimulation in Individuals With Down Syndrome | ClinicalTrials.gov, accessed October 8, 2025, https://www.clinicaltrials.gov/study/NCT05196984
- 33. Vibroacoustic Research Tommy Dill, accessed October 8, 2025, https://tommydill.com/vibroacoustic-research

stic-therapy-sound-waves-for-healing.html

- 34. Possible Mechanisms for the Effects of Sound Vibration on Human Health MDPI, accessed October 8, 2025, https://www.mdpi.com/2227-9032/9/5/597
- 35. Effects of Vibroacoustic Stimulation on Psychological, Physiological, and Cognitive Stress, accessed October 8, 2025, https://www.mdpi.com/1424-8220/24/18/5924
- 36. EEG Effects of Vibroacoustic Stimulation and Guided Mindfulness Meditation on Cognitive Well-Being, Concentration, and Relaxation MDPI, accessed October 8, 2025, https://www.mdpi.com/2813-9844/7/4/80
- 37. Whole-body vibration improves cognitive functions of an adult with ADHD PubMed, accessed October 8, 2025, https://pubmed.ncbi.nlm.nih.gov/25031090/
- 38. Effects of a novel non-pharmacological intervention based on respiratory biofeedback, neurofeedback and median nerve stimulation to treat children with ADHD Frontiers, accessed October 8, 2025, https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2025.1478501/full
- 39. Effectiveness of sensory integration therapy in children, focusing on Korean children: A systematic review and meta-analysis PubMed Central, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10955541/
- 40. Evaluating the evidence: a systematic review of reviews of the effectiveness and safety of digital interventions for ADHD PMC, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12016436/
- 41. Evaluating Sensory Integration/Sensory Processing Treatment: Issues and Analysis Frontiers, accessed October 8, 2025, https://www.frontiersin.org/journals/integrative-neuroscience/articles/10.3389/fnint.2020.556660/full
- 42. Complementary and Alternative Treatments for ADHD: What the Evidence Suggests, accessed October 8, 2025, https://www.psychiatrictimes.com/view/complementary-and-alternative-treatments-adhd-what-evidence-suggests
- 43. Non-pharmacological interventions for attention-deficit hyperactivity disorder in children and adolescents PMC, accessed October 8, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10370370/